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Two aspects of small-scale turbulence are currently regarded universal, as they have
been reported for a wide variety of turbulent flows. Firstly, the vorticity vector has
been found to display a preferential alignment with the eigenvector corresponding
to the intermediate eigenvalue of the strain rate tensor; and secondly, the joint
probability density function (p.d.f.) of the second and third invariant of the velocity
gradient tensor, Q and R, has a characteristic teardrop shape. This paper provides
an explanation for these universal aspects in terms of a spatial organization of
coherent structures, which is based on an evaluation of the average flow pattern
in the local coordinate system defined by the eigenvectors of the strain rate tensor.
The approach contrasts with previous investigations, which have relied on assumed
model flows. The present average flow patterns have been calculated for existing
experimental (particle image velocimetry) or numerical (direct numerical simulation)
datasets of a turbulent boundary layer (TBL), a turbulent channel flow and for
homogeneous isotropic turbulence. All results show a shear-layer structure consisting
of aligned vortical motions, separating two larger-scale regions of relatively uniform
flow. Because the directions of maximum and minimum strain in a shear layer are in
the plane normal to the vorticity vector, this vector aligns with the remaining strain
direction, i.e. the intermediate eigenvector of the strain rate tensor. Further, the QR
joint p.d.f. for these average flow patterns reveals a shape reminiscent of the teardrop,
as seen in many turbulent flows. The above-mentioned organization of the small-scale
motions is not only found in the average patterns, but is also frequently observed in
the instantaneous velocity fields of the different turbulent flows. It may, therefore, be
considered relevant and universal.
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1. Introduction
In this paper, we present average flow patterns in local coordinate systems, such as

those defined by the eigenvectors of the strain rate tensor. The purpose is to identify
the flow pattern (or coherent structures) responsible for some apparently universal
aspects of small-scale turbulence, which are associated with local frames of reference
(Tsinober 2001). These aspects are (i) the preferred alignment of the vorticity vector
with the intermediate eigenvector of the strain rate tensor and (ii) the teardrop shape
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of the joint probability density function (p.d.f.) of the second and third invariant of
the velocity gradient tensor, Q and R (Chong, Perry & Cantwell 1990). Moreover,
the presented average patterns help clarify universal aspects of the organization of
small-scale motions in turbulence and their relation to the larger energy-containing
scales of motion.

1.1. Background

The orientation of the vorticity vector ω relative to the eigenvectors of the rate of strain
tensor S has received important attention in turbulent flows because of its relevance to
the vorticity stretching term (i.e. ωT Sω) in the enstrophy equation. Results from both
numerical simulations and experiments have indicated that ω preferably aligns itself
with the eigenvector corresponding to the intermediate eigenvalue of S (which will
be referred to as the intermediate eigenvector in this paper). This behaviour has been
observed in a broad range of turbulent flows as well as across Reynolds numbers
(see e.g. Ashurst et al. 1987; Tsinober Kit & Dracos 1992; Vincent & Meneguzzi
1994; Kholmyansky, Tsinober & Yorish 2001; Lüthi, Tsinober & Kinzelbach 2005;
amongst many others). These flows include isotropic turbulence, turbulent shear flow,
turbulent boundary layers (TBLs) and atmospheric turbulence.

The alignment with the intermediate strain rate direction has been used to explain
the limited growth rates observed for vorticity. Whereas vorticity prefers alignment
with the intermediate eigenvector, material lines and passive vectors, which are
measures for the mixing properties of turbulence, generally tend to be directed towards
the direction of maximum strain and consequently experience greater average growth
rates (Huang 1996; Ohkitani 2002; Lüthi et al. 2005).

Previous, geometric/kinematic explanations for the observed vorticity alignment
relied on idealized flow patterns, i.e. the Burgers vortex and layer (Andreotti 1997),
or assumed two-dimensional (2D) coherent vortex structures (Jimenez 1992). These
arguments, however, contain some uncertainties in that the vortices are rarely 2D, and
that the relation between the idealized flow and the full complexity of real turbulence
is not obvious. Furthermore, some details remain to be explained, in particular for the
core region of (quasi) 2D vortices, because vorticity aligns with the most stretching
eigenvector, and not the intermediate eigenvector, in a finite region around the axis
of a Burgers vortex (Andreotti 1997). The swirling motion in this region is nearly
rotationally symmetric and consequently the strain rate tensor in this flow has two
eigenvalues (i.e. principal strain rates) of equal sign and nearly equal in magnitude,
which correspond to the eigenvectors in the plane of the swirling motion, and one
eigenvalue related to the eigenvector in the direction of the swirling axis. Due to
continuity requiring that the sum of the eigenvalues equals zero, the latter eigenvalue
is of opposite sign to that of the other two, and consequently the swirling axis aligns
with either the most compressing or the most stretching eigenvector, and not the
intermediate eigenvector. In contrast, in turbulent flow the tendency for alignment
with the intermediate eigenvector is observed to be stronger for increasing vorticity
magnitude (e.g. Huang 1996), which is often concentrated in the core of (vortex) tubes
(She, Jackson & Orszag 1990; Jimenez et al. 1993).

Alternatively, some explanations for the vorticity alignment with the intermediate
eigenvector have been offered based on an analysis of the flow governing equations
without considering the coherent structure explicitly. Ashurst et al. (1987) proposed
that the alignment is a consequence of angular momentum conservation in a restricted
Euler model of the flow ignoring viscosity and pressure interactions between turbulent
eddies (Vieillefosse 1984; Cantwell 1992). Along similar lines, it has been shown,



516 G. E. Elsinga and I. Marusic

assuming nonlinear and viscous terms in the vorticity equation are small, that strong
straining of weak vorticity tends to produce sheets possessing the mentioned alignment
(Kevlahan & Hunt 1997). Both mathematical models may explain the initial stages
of the alignment of weak vorticity, but are not sufficient for intense vorticity at small
scales where viscosity is deemed important. Furthermore, comparisons of the dynamic
evolution of vorticity and passive material lines with and without diffusion (Ohkitani
2002; Lüthi et al. 2005) have indicated the importance of viscosity in maintaining the
alignment of vorticity with the intermediate eigenvector and the vorticity dynamics
in general. Nevertheless, the alignment has been observed in a vorticity sheet in real
turbulence before the sheet rolled up into a vortex tube (Vincent & Meneguzzi 1994).
The concentration of vorticity in sheets has also been observed by Passot et al. (1995),
who additionally demonstrated by numerical simulation of individual sheets that
under certain conditions multiple vortex tubes can result. Similar sequences of events
have also been found to play an important role in the development of turbulence
from initially random vorticity fields in direct numerical simulation (DNS) (Kida
& Tanaka 1994; Horiuti & Fujisawa 2008). In a recent study, Goto (2008) ascribes
the formation of small-scale vortices (i.e. energy cascade) directly to the straining
by (counter-rotation) large-scale vortices. The fact that shear-layer roll-up was rarely
observed could be due to this process being very fast as noted by the author. In any
case, shear-layer roll-up is mainly a dynamical relation between sheets and vortices.
Instantaneously, visualizations by Vincent & Meneguzzi (1994) revealed alignment
of some vortices and Jimenez et al. (1993) presented some indication of background
vorticity concentrated in sheets with tubes/worms embedded in this background. The
relevance of sheets in various turbulent flows deserves further statistical investigation,
such as proposed here, especially in the light of the mentioned kinematic models for
the vorticity alignment in vortical structures.

The second potentially universal aspect of small-scale turbulent motion relates
to the invariants of the velocity gradient tensor A = ∇V , which are P = −Aii ,
Q = −(1/2)AijAji and R = −(1/3)AijAjkAki . These invariants completely define the
generalized local flow topology with respect to the reference frame determined by the
eigenvectors of A, as outlined in Chong et al. (1990). Here, the term ‘local’ refers to
a pointwise evaluation of the velocity gradient tensor. Note that for incompressible
flow P =0 due to continuity, so that the topology can be characterized using only
Q and R. Joint p.d.f.s of Q and R across a variety of turbulent flows such as
mixing layers, isotropic and wall-bounded turbulence have all revealed a self-similar
teardrop shape (Soria et al. 1994; Blackburn, Mansour & Cantwell 1996; Chong et al.
1998; Ooi et al. 1999; Elsinga & Marusic 2010). And there is also some evidence to
suggest that the similarity may even extend to compressible flows (Tsinober 2001).
Although the teardrop appears from models for the pointwise velocity gradient
evolution (Cantwell 1993; Biferale et al. 2007), the authors are not aware of a suitable
comprehensive interpretation or explanation of this shape in relation to the small-
scale coherent structures. Thus far these topics, though closely related, appear to have
developed mostly separately. However, some observations concerning the invariants
and physical quantities or coherent structures stand out. The points in the QR plane
corresponding to a positive value of the discriminant D = (27/4)R2 + Q3 correspond
mainly to (vortex) tube structures (Chong et al. 1998; Chacin & Cantwell 2000) and
dissipation occurs mostly in the tail of the tear shape (Q < 0, R > 0) in points located
near the tube structures in physical space (Chacin & Cantwell 2000). This spatial
relation was also noted in a number of other studies (e.g. Kerr 1985; Ruetsch &
Maxey 1991; Vincent & Meneguzzi 1994). These are partial observations, meaning
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that specific physical quantities are put in relation to specific parts of the QR space.
Hence no integral picture of the small-scale turbulent motions emerges directly from
them.

1.2. Methodology

As mentioned above, the vorticity alignment and the invariants of the velocity gradient
tensor A are evaluated in a local frame of reference defined by the local velocity
gradients. Specifically, the orientation of the vorticity vector is determined relative to
the eigenvectors of the strain rate tensor S= (AT + A)/2. We therefore turn to the
average flow patterns in this eigenframe to establish the statistically relevant flow
structure responsible for these two aspects of small-scale turbulence. Furthermore, a
statistical approach allows a direct comparison of different flows. In particular, we will
consider here a TBL, a channel flow and homogeneous isotropic turbulence. As will
be shown, these average patterns reveal a particular spatial arrangement of vortices
and vorticity sheets, which is similar in appearance for all three turbulent flows, yet
is strikingly different from that returned by a random divergence-free velocity field.
Moreover, these average flow patterns can explain the observed teardrop shape of
the invariants’ joint p.d.f. It will, furthermore, be shown that this average pattern
occurs frequently in the instantaneous flows. Based on these results the previously
proposed kinematic explanations for the vorticity alignment can be refined and a
comprehensive model can be constructed, which combines many of the small-scale
turbulence features found in the literature. In this paper, the focus is on the flow
kinematics leaving dynamical aspects for future work.

The turbulence datasets used in the present study originate from different sources.
The boundary-layer data are from Schröder et al. (2008), who measured the full
three-dimensional (3D) velocity distribution in water by tomographic particle image
velocimetry (PIV) (Elsinga et al. 2006). The measurement volume covered the outer
layer between 0.11δ and 0.30δ distance from the wall, where δ is the boundary-layer
thickness. The Reynolds numbers based on momentum thickness and wall shear
stress are Reθ = 2460 and Reτ =800, respectively. The spatial resolution is 0.07δ

equivalent to 56 wall units. The turbulent channel flow is DNS data from del Alamo
et al. (2004). For this flow the Reynolds number based on skin friction is Reτ = 934.
Compared to the experiment, the spatial resolution is higher for the channel DNS at
approximately seven wall units in the outer region. Finally, the velocity distribution in
forced homogenous isotropic turbulence at Reλ = 170 has been provided by Dr A. A.
Wray (CTR 2002, private communication). These data are from a DNS on a 2563 grid
using a classical pseudospectral code (e.g. Jimenez et al. 1993). The spatial resolution
is this case is kmaxη = 1.25, where kmax is the maximum resolved wavenumber and η

is the Kolmogorov length scale.
The volumetric data allow an evaluation of all nine elements of the velocity gradient

tensor A. The strain rate tensor S is then given by the symmetric part of the velocity
gradient tensor: S = (AT +A)/2. The eigenvalues of S, also referred to as the principal
strain rates, will be denoted as σi and the corresponding eigenvectors as λi . We will
order the eigenvalues as σ1 >σ2 > σ3. From incompressibility it follows that the sum
of σi is zero, hence σ1 > 0 and σ3 < 0. The intermediate eigenvalue σ2 can be positive
or negative, but is reported to be positive on average (e.g. Betchov 1956; Ashurst et al.
1987). The orientation of the vorticity vector ω within the coordinate system defined by
the eigenvectors λi is commonly expressed by three angles θω,i , which are determined
from the inner products cos(θω,i) = (ω · λi)/(|ω||λi |). The p.d.f.s for these angles in the
present boundary-layer dataset are shown in figure 1. In agreement with the literature
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Figure 1. (Colour online) Probability density functions of the cosine of the angle between the
vorticity vector and the three eigendirections of the strain rate tensor. The results are for the
TBL.

the vorticity displays a preferential alignment with the intermediate eigenvector
showing as an increased probability of |cos(θω,2)| = 1. Furthermore, it is mostly
oriented normal to the most compressing eigendirection λ3. The p.d.f. of the angle with
eigenvector corresponding to the largest stretching λ1 is essentially flat, as expected.

In the following section, some basic properties of the strain rate tensor will
be analysed first with their possible implications for vorticity alignment (§ 2)
before describing the averaging procedures and discussing the results (§§ 3 and 4).
Furthermore, the average flow patterns will be compared with instantaneous
turbulence in terms of the probability distribution of the invariants Q and R (§ 5) and
the specific spatial arrangement of the coherent structures in the velocity vector field
(§ 6). A possible dependence of the average patterns on the Reynolds number will be
commented on (§ 6).

2. Analysis of possible flow patterns in principal strain coordinates
In the analysis of the strain rate tensor the concept of Mohr-circles (in analogy with

the mechanical stress tensor, Gere & Timoshenko 1991) will be used, which yields a
graphical representation of all admissible states of this tensor under a rotation of the
coordinate system. It is based on geometric relations and applicable to any symmetric
second-order tensor. Below, the diagonal components of the strain rate tensor will
be referred to as the strain rates σ , representing the stretching rate of a filament
instantaneously lined up with a coordinate axis, and the off-diagonal elements as rate
of shearing τ , which is one-half the rate of angular change between two originally
perpendicular filaments (with directions indicated by the indices). The Mohr-circles in
the (σ, τ ) plane (figure 2) are now a simple and useful tool to determine the maximum
value of the off-diagonal elements in the strain rate tensor, and the direction for which
this maximum occurs. Starting with the coordinate axes aligned with the principal
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Figure 2. Mohr’s circle for strain σ and shearing τ . See text for definitions.
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Figure 3. Three types of shearing motion around a square fluid element. The vectors indicate
a relative velocity with respect to the fluid element. Also shown are the corresponding principal
strain rate axes (dashed lines). (a) Pure strain (uy = vx), (b) shear layer (vx = 0) and (c) shear
layer (uy =0).

axes, the corresponding strain rate tensor has non-zero entries only along its diagonal,
which are the principal strain rates σi . This state is represented by three points on
the horizontal axis (figure 2). All other accessible states under a rotation of the
coordinate system around the λ2 direction then collapse onto a circle (labelled ‘C2’)
with its centre on the σ -axis at (σ1 + σ3)/2 and with radius |σ1 − σ3|/2. The angle of
rotation α is also indicated in figure 2. Similar circles (labelled ‘C1’ and ‘C3’) can be
constructed for rotations in the other directions starting from a coordinate system
aligned with the principal axes. All possible combinations of shearing and straining
are confined to the region enclosed by C2 and outside C1 and C3. It is now quickly
seen that the maximum shearing (i.e. maximum off-diagonal element in S) is obtained
by a rotation over 45◦ in the plane spanned by the eigenvectors λ1 and λ3.

In fluid flow the shearing is composed of two velocity gradients, which can be
unequal in magnitude (e.g. τxy = uy + vx , note that the difference with shear stress is
the viscosity). Hence, it can result from either a pure strain (which would be equivalent
to a saddle point flow pattern, figure 3a) or a single component (τxy = uy with vx =0
or alternatively τxy = vx with uy = 0, see figures 3b and 3c), which will be referred to
as a shear-layer-type flow. The essential difference here is that shear layers contain
vorticity, whereas a pure strain does not. Therefore, it is important at this point to
establish which of these two flow types dominates in turbulent flow and to what
extent. This is most relevant in the λ1, λ3 plane, as this plane contains the shearing



520 G. E. Elsinga and I. Marusic

maximum and a shear-layer-type flow in that plane would relate to the component
of vorticity in the direction of the intermediate eigenvector λ2.

3. Average flow field in the eigenframe of the strain rate tensor
3.1. Averaging procedure

To obtain the relative importance of a pure strain and a layered shear (figure 3),
the average fluctuating velocity field on a grid aligned with the local principal strain
directions is calculated. The averaging procedure can be summarized as follows. At
a point in the measurement volume the principal directions of the strain rate tensor
λi are determined. The positive orientations along these directions have to be chosen
with some care as will be pointed out below. Then the velocity field around that
point is resampled on a uniform rectangular grid with coordinates (λ1, λ2, λ3) along
the corresponding local λi directions and the origin located at the considered point
in the flow. Finally the resampled velocity fields for all points and for all realizations
are averaged.

In order to differentiate between the pure strain and the layered shear in the λ1, λ3

plane an additional criterion for defining the positive λ2 direction is needed, because
the shear-layer cases of figures 3(b) and 3(c) are equivalent in terms of the strain
rate tensor and its eigenvectors. So when they occur, they will occur with equal
probability in the eigenframe λi and average out to the pure strain case depicted in
figure 3(a). This is a direct consequence of the strain rate field being symmetric in the
eigendirections. Hence λi can be inverted without changing the strain rate field. To
avoid averaging out the shear layers, the λ2 direction will be chosen such that its inner
product with the vorticity vector is positive, which will collapse the case of figure 3(c)
onto the case of figure 3(b). To maintain a right-handed system of coordinates, the
first eigenvector is adapted accordingly. Note that this procedure is of no consequence
to the case of pure strain (figure 3a). Further, since only two criteria (the definition of
the positive direction along λ2 and λ1 as a function of λ2 and λ3) are used to reduce
the original three degrees of freedom (one for each λi direction), the average patterns
will have a remaining imposed symmetry about the line λ2. This, however, does not
affect the relative contributions of pure strain and layered shear at the origin, which
is our main interest at this point.

3.2. Results

The result of the averaging procedure for the TBL, channel flow and isotropic
turbulence are shown in figures 4, 5 and 6, respectively. The pattern for isotropic
turbulence represents the average over the complete computational domain, whereas
for the boundary layer and channel flow only points at a specified distance from
the wall are considered and averaging is performed in the (nearly) homogeneous
directions parallel to the wall. These wall normal locations are in the outer layer
between 0.13δ and 0.28δ, and at 0.2h, where δ is the boundary-layer thickness and h
is the channel half-height.

The averages share some pronounced and common features. First of all, near the
origin in the λ1, λ3 plane (figures 4a, 5a and 6a) a flow compression and stretching
are seen in the direction of the third and first eigenvector resulting in the shearing
maximum when rotating the coordinate system by 45◦, as expected. The local topology
is a combination of pure strain and layered shear (as defined in figure 3), where the
latter is observed to dominate the average flow pattern. This dominance will be
quantified later on. The shearing is maximum in this plane, as shown above, and
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Figure 4. (Colour online) Average fluctuating velocity field in the coordinate system defined
by the local principal strain directions for points between 0.13 and 0.28 δ distance from the wall
in a TBL. The velocity vectors relative to the average velocity are shown in three cross-planes
(a–c) with the corresponding 3D streamlines displayed in (d).

consequently it will yield a significant contribution to the vorticity vector in the λ2

direction, which provides an explanation for the observed preferential alignment of ω

with λ2. In this argument we have only used the observation that shearing is mainly
asymmetric (of shear-layer type), which is a statistically dominant property of the
turbulent flow as revealed by the averaged flow pattern in the eigenframe λi . The
alignment then follows directly from a geometric/kinematic consideration similar to
Jimenez (1992). Additionally, the presence of saddles (pure strain without vorticity)
and strong flow rotation may result in a non-perfect alignment of ω with λ2. The
effects of rotation will be discussed later in § 4.

Even though the above result may appear similar to the discussion of the alignment
in a Burgers vortex sheet by Andreotti (1997), there is, however, a subtle difference in
the fact that no (a priori) model flow is assumed in the present analysis. Hence it can
be concluded here that shear layers not only can, but in fact do explain the alignment.
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Figure 5. (Colour online) Average fluctuating velocity field in the coordinate system defined
by the local principal strain directions for points at 0.2h distance from the wall in DNS channel
data. The velocity vectors in the λ1, λ3 plane are relative to the average velocity (a). Note that
100 wall units is equal to 0.11h. The corresponding 3D streamlines are displayed in (b).

−50 −25 0 25 50

−50

−25

0

25

50

Isotropic DNS λ2/η = 0

λ
1/

η

λ3/η

λ3 λ1

λ2

(a) (b)

Figure 6. (Colour online) Average fluctuating velocity field in the coordinate system defined
by the local principal strain directions for points in DNS of isotropic turbulence, shown as
velocity vectors in the λ1, λ3 plane (a) and the corresponding 3D streamlines are displayed
in (b).

Moreover, the present results suggest these are not simple shear layers, but may be
composed of several aligned vortices. These shear layers appear to extend beyond a
vortex diameter from the origin and, therefore, seem to be of a larger scale than the
individual vortex itself, even when considering only one-half the symmetric pattern.
We will return to that point in § 6.

A second common feature is the stretching in the direction of the intermediate
eigenvector, which is expected as the intermediate eigenvalue σ2 is widely reported to
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Figure 7. (Colour online) Average fluctuating velocity field in the coordinate system defined
by the local principal strain directions for points in a random velocity field satisfying continuity,
shown as velocity vectors in the λ1, λ3 plane (a) and the corresponding 3D streamlines are
displayed in (b). The velocity power spectrum is equal to the isotropic turbulence case presented
in figure 6 as is η.

be positive on average. Consequently, the flow pattern in the λ1, λ2 plane and λ2, λ3

plane reveal a node and a saddle, respectively (see figure 4b–c for the TBL with very
similar patterns obtained for the other cases, which therefore have been omitted).
This also means that the vorticity in the mentioned shear layer in the λ1, λ3 plane is
stretched, which is required on average to balance viscous dissipation in statistically
steady turbulence.

It is now of interest to visualize the streamlines in the averages and look at the
flow topology in the shear layers in some more detail. Three-dimensional renderings
of the streamlines are presented in figures 4(d), 5(b) and 6(b), where the greyscale
intensity is proportional to the λ2 coordinate. Two distinct stable foci representing
stretched vortices are visible in each plot. They are located within the shear layer
on opposite sides from the origin, as expected due to the symmetry imposed by the
averaging process. Within the foci, the streamlines spiral inwards while moving away
in the positive or negative λ2 direction. The topology at the origin is that of an
unstable node with streamlines quickly moving away from that point, which cannot
be visualized adequately, but instead may be inferred from the corresponding vector
plots. Furthermore, the shear layer separates two relatively larger-scale quasi-uniform
flow regions having opposing velocity directions. In these regions the streamlines are
nearly parallel. The average flow patterns are remarkably similar for the different
flow cases. They also bear great similarity with the flow features in the instantaneous
turbulent flow fields, which will be elaborated upon in § 6.

In order to demonstrate that the presented patterns are not trivial results, the
averaging procedure has been applied to a random velocity field, which is divergence
free and has the same velocity power spectrum as the isotropic turbulence case
but with a randomized phase. It has been generated using the method described in
Rogallo (1981). The difference with real turbulence is best seen from the streamlines
in the average flow pattern for the random velocity field (figure 7b), which reveals
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a skewed saddle point topology at various λ2 locations (indicated by the grey scale).
This result is in sharp contrast with the shear layer with stable foci in real turbulence.
Furthermore, there is no stretching along the λ2-axis for the random field, as can be
inferred from the streamlines.

Additionally, the averaging procedure is also tested on the Burgers vortex flow,
which is known to have ω alignment with λ2 in the periphery around the core (but not
in the actual inner core itself) and therefore it has been used to explain this alignment
in the past. The flow is a solution of the Navier–Stokes equations and represents a
stretched vortex with velocity components:

−r∗

2Re
,

2(1 − exp(−r∗2

/4))

r∗ ,
z∗

Re
(3.1)

in the radial, angular and axial direction, respectively, where r∗ and z∗ are non-
dimensional radial and axial coordinates and Re is a Reynolds number representing
the amount of vorticity stretching relative to the peak vorticity. Increasing Re in this
case corresponds to decreasing stretching. The vortex core diameter D, defined as
twice the radial distance for the angular velocity peak, is about 4.5 non-dimensional
lengths, which will be used to normalize the lengths. The average pattern in the
strain rate eigenframe for a single vortex at Re = 5000 is presented in figure 8(a)
revealing four vortices in a symmetric arrangement with a saddle point topology in
between, which is clearly different from any of the patterns shown before for actual
turbulence. Here, the flow has been averaged over a box centred on the vortex core
spanning 4.4D in axial direction and 8.9D × 8.9D in the other directions. Averaging
over much smaller domains (not shown), of the order of one core diameter, which
would be smaller than the expected distance between separate vortices in turbulence,
returns a different pattern of two vortices along a diagonal line with a large-scale
swirling motion around them instead of an extended shear layer as before. Further,
while increasing Re does not change the result qualitatively, decreasing Re, thereby
increasing the vortex stretching, yields again a large-scale saddle point flow (figure 8c)
similar to the random velocity field (figure 7). Finally, a field of 100 Burgers vortices
randomly positioned with an average spacing of 2.0D and having random swirling
directions results, for high Re, in two vortices with a large-scale swirl enclosing them
(figure 8b). The two vortices inside appear to be separated along the diagonal by
approximately the average spacing (2.0D). For lower Re the average is again a saddle
point (figure 8d) with the transition in topology occurring between Re = 5000 and
500. This is an interesting result as one may expect a lower, order unity, Re to be
more representative of small-scale turbulence (where peak vorticity and stretching are
of similar order), but instead the corresponding average pattern reveals the largest
difference with respect to real turbulence. This is yet another indication that Burgers
models can offer only a partial explanation for the features of small-scale turbulence.
But more importantly, the absence of a larger-scale shear layer in all these simulations
demonstrates this feature is not introduced by the applied averaging procedure or the
particular reference frame, hence must be attributed to real turbulence.

The relative importance of layered shear versus pure strain (i.e. saddle) can be
quantified by evaluating the velocity gradient tensor at the origin in the average
flow patterns. This is done in a new coordinate system (t, n) with corresponding
velocity components Vt and Vn, where n is the distance normal to the shear layer
and t is taken along the shear layer in the λ1, λ3 plane (this is equivalent to a 45◦

rotation around the λ2 axis, figure 9). The velocity gradient tensor A then takes on the
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velocity vectors are shown in the λ1, λ3 plane (λ2 = 0).

−0.1 0 0.1

−0.1

0

0.1

λ3

n
t

λ1
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PIV TBL DNS channel DNS isotropic Random

Shearing in (λ1, λ2, λ3) fields (§ 3)
Part due to pure strain (saddle) 40% 29 % 36% 51%
Part due to shear layer 60% 71 % 64% 49%

Table 1. Overview of results in the eigenframe of the strain rate tensor.

form:

A =

⎡
⎢⎣

∂Vt/∂t 0 ∂Vt/∂n

0 a22 0

∂Vn/∂t 0 ∂Vn/∂n

⎤
⎥⎦ , (3.2)

where a22 is the velocity gradient in the λ2 direction. The total shearing can then
be defined as (∂Vt/∂n + ∂Vn/∂t). Note that both terms are positive and that
∂Vt/∂n> ∂Vn/∂t as a consequence of the chosen coordinate system (figure 9).
Furthermore, the total shearing is assumed to be composed of a symmetrical
component 2∂Vn/∂t and an asymmetrical component (∂Vt/∂n− ∂Vn/∂t), which, when
normalized by the total shearing, correspond to a relative contribution from a pure
strain and a shear layer, respectively. Note that the asymmetric component is equal
to the vorticity. These relative contributions are presented in table 1 for all turbulent
flows considered as well as for the random velocity field. The shear-layer contribution
is found to be 60–70 % of the total shearing in real turbulence, whereas it is only
50 % in a random field. The smallest value is attained for the TBL, which is likely due
to the larger flow scales measured in that particular PIV experiment compared to the
high resolution DNS for the other flows. Still the agreement between experiments and
numerical simulation is good. To check for a possible bias towards the stronger shear
events in the above results, a slightly modified averaging procedure was employed in
which each individual resampled velocity field is normalized by the local total shearing
prior to the averaging step. The relative contribution of a layered shear in that case
is 64 % for the TBL case, which is close to the 60 % without normalization (table 1).
This suggests the above results are not significantly biased and are representative of
strong as well as weaker total shearing events.

4. Average flow pattern around the vorticity and swirl vector
Following a procedure similar to the above (§ 3.1), the average flow field around

the vorticity ξω and the swirl ξ swirl directional vector is determined, and the results
for the TBL are shown in figure 10. The swirl vector exists only when the velocity
gradient tensor A has two complex eigenvalues (Zhou et al. 1999) and is defined here
as the direction of the eigenvector corresponding to the remaining real eigenvalue of
A. In these averages a second direction ξ 3 is defined as the projection of the third
eigenvector of the strain rate tensor λ3 onto to the plane normal to ξω or ξ swirl .
This is motivated by the observation that ξω is predominantly oriented normal to
λ3 (see figure 1). The remaining direction ξ 1 is then chosen such as to produce a
right-handed rectangular coordinate system (ξ1, ξw, ξ3) or (ξ1, ξswirl , ξ3). As before, the
fluctuating velocity is resampled in this local coordinate system for each point in the
flow, and this is then averaged over all the points considered. The results obtained
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Figure 10. (Colour online) Average fluctuating velocity field in the coordinate system defined
around the vorticity direction ξω (a) and swirling direction ξ swirl (b) in a TBL. The velocity is
relative to the average velocity. See text for the definition of the other axis.

for the different turbulent flows are very similar, and the conclusions reached here
are applicable to all the cases considered in this study.

The average flow around the vorticity vector in the TBL (figure 10a) reveals the
superposition of a shear layer and a perfectly circular rotational motion, which is
defined as a rotationally symmetric swirling topology, for example uy = −vx . The result
shows that the flow pattern around the vorticity vector is mainly associated with shear
layers and to a lesser extent with such a rotationally symmetric swirling motion. This
may appear to contradict the conclusions of She et al. (1990), Jimenez et al. (1993)
and others, who report that vorticity is concentrated in (vortex) tubes. However, if
the vortices align, as observed in the average flow pattern in the eigenframe of the
strain rate tensor (figures 4–6) and in the instantaneous flow visualizations of Jimenez
et al. (1993) and Vincent & Meneguzzi (1994) in isotropic turbulence, then that would
explain both results. Furthermore, the result here showing that the contribution of a
rotational symmetric swirling motion to the vorticity is weak, means that the alignment
of vorticity ω and the intermediate eigenvector λ2 can be explained by the previous
average flow pattern in the eigenframe of the strain rate tensor (vorticity related to
shear layers is captured in the results of § 3 and the expected deviations due to a
symmetric rotation are shown to be small here). The presence of vortices in a shear
layer also explains why the vorticity alignment can be found in the inner core region
of intense vortices, which is not the case in models like the Burgers vortex (Andreotti
1997).

In the other planes containing the vorticty direction (not shown), the average flow
around the vorticity vector resembles a saddle and a node, similar to the results of
figure 4. Again, vorticity is found to be stretched on average. Also as before, the
flow pattern appears coherent up to 0.2δ–0.3δ distance from the origin with relatively
uniform flow conditions on either side of the shear layer.

In contrast, the flow around the swirling direction displays hardly any evidence
of vortex stretching in the direction of ξswirl . As can be seen from figure 11, the
swirling direction is predominantly aligned with the first (maximum stretching) and
third (maximum compression) eigenvector of the strain rate tensor. The averaging
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Figure 11. (Colour online) Probability density functions of the cosine of the angle between
the swirl direction and the eigendirections of the strain rate tensor.

procedure cancels out both stretching and compression. The different preferential
orientation with respect to the eigenvectors can be explained as follows. Swirling
motion is (nearly) rotational-symmetric hence the two eigenvalues related to the
eigenvectors in the plane approximately normal to the swirling direction have the
same sign. Because the sum of the eigenvalues equals zero, the remaining eigenvalue,
related to the eigenvector in the swirling direction, must be of opposite sign and
consequently must represent either maximum stretching or compression. These results
again confirm that vorticity and a vortex (defined as a swirling motion around ξ swirl )
are not the same thing. Still the average swirling motion appears to be imbedded in
a shear-layer environment (figure 10b). It is therefore conjectured that the swirling
motion is the result of a shear-layer roll-up (see e.g. Passot et al. 1995). During
the roll-up the orientation of the coordinate system defined by the eigenvectors of
the strain rate tensor λi may flip due to changing magnitude, hence the order, of the
eigenvalues. The switching of the eigenvectors has been observed in the experiments
of Guala et al. (2005).

To quantify the relative contributions of layered shear and rotationally symmetric
swirling to the total vorticity at the origin in the average flow in the coordinate system
(ξ1, ξw, ξ3) (figure 10a), the velocity gradient tensor A is again evaluated in the (t, n)
system of reference (where t is taken in the direction of the shear layer and n is
normal to it, similar to figure 9). As before, A takes on the form of (3.2), however
this time ∂Vt/∂n> −(∂Vn/∂t) > 0. The total vorticity magnitude is then given by
(∂Vt/∂n−∂Vn/∂t), which is split into a contribution from symmetric rotation (defined
as −2∂Vn/∂t) and a remaining part (∂Vt/∂n+∂Vn/∂t) representative of a layered shear
(note that the latter corresponds to the asymmetric part of vorticity and that the plus
sign in this case is only the result of the negative ∂Vn/∂t and positive ∂Vt/∂n). For
the TBL (figure 10a), this yields relative contributions to the total vorticity of 25 %
(rotation) and 75 % (shear layer). The ratios for the other turbulent flows are listed
in table 2. The DNS results indicate an even larger percentage due to layered shear
(>80 %), which is likely due to the small flow scales resolved. These percentages are
very different for the random velocity field, which returns a 50–50 % balance between
layered shear and rotation. This is yet another indication that the reported average
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PIV TBL DNS channel DNS isotropic Random
Vorticity in (ξ1, ξω , ξ3) fields (§ 4)

Part due to rotation 25% 17 % 18% 49 %
Part due to shear layer 75% 83 % 82% 51 %

Table 2. Overview of results in the eigenframe around the vorticity vector.

flow patterns for real turbulence are not trivial and contain an excess of layered shear
with respect to the random field results.

5. Invariants of the velocity gradient tensor
The topological details of the average flow patterns in the eigenframe of the strain

rate tensor (§ 3) will be explored further by evaluation of the invariants Q and R of
the velocity gradient tensor. From this a Q, R scatter plot is produced containing
all points within the average pattern. The invariants are normalized using 〈QW 〉,
which is the average value of the second invariant of the rate of rotation tensor, i.e.
the asymmetric part of the velocity gradient tensor (A − AT )/2. The normalization,
however, is not important in the qualitative discussion that follows.

The resulting scatter plots are shown in figure 12 for the TBL, channel flow,
isotropic turbulence and the random velocity field. All plots reveal a concentration
of points near Q =R = 0, which correspond to the points away from the origin in
the average flow pattern, where the velocity gradients are relatively small. The results
also show an important difference between real turbulence and the random velocity
field for the points having a relatively large velocity gradient (i.e. points further
away from Q =R = 0). Whereas the random field returns a scatter symmetric in R

with the largest velocity gradients occurring in node-saddle topologies, which are the
points below the dashed, null discriminant line (Chong et al. 1990), real turbulence
does not display such symmetry far away from Q = R =0. Rather we observe an
accumulation of points in the Q > 0, R < 0 corner (labelled I in figure 12a) and
the Q < 0, R > 0 corner (labelled II), which correspond to stable foci and unstable
node-saddle topologies, respectively (Chong et al. 1990). As has been shown in § 3,
both these stable foci and unstable node-saddle occur within the shear layer in the
average flow patterns (see figures 4–6).

The QR scatter plots for the average patterns are consistent with the symmetry
breaking that has been found in the joint p.d.f.s of Q and R for various instantaneous
turbulent flow fields, for which iso-contours display a teardrop shape with the tail
along the right branch of the null-discriminant line into region II and the body
inclined towards region I (Soria et al. 1994; Blackburn et al. 1996; Ooi et al. 1999;
Chong et al. 1998; Elsinga & Marusic 2010). Hence, the presented patterns can be the
underlying flow feature explaining the inclination of the QR joint-p.d.f. contours in
turbulent flows. The exact teardrop shape could then follow from (small) variations
of the flow pattern around the average. One can think of variations in vorticity
magnitude and stretching rates as well as variations in the spatial separation of the
different local topologies.

In the above scenario the joint p.d.f. is not simply a pointwise statistic, but has
meaning in terms of an extended coherent flow pattern. This seems to be supported
further by previous observations revealing that from the basic state Q =R = 0,
representing degenerate topologies including shear layers, all topology types develop
(Elsinga & Marusic 2010). Then from topological constraints it follows that those
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Figure 12. (Colour online) QR scatter plot for the conditional averages in the strain rate
tensor eigenframe (figures 4–7). The dashed line indicates the null discriminant line separating
focal topologies (above the line) from node-saddle topologies (below the line). (a) PIV TBL,
(b) DNS channel, (c) DNS isotropic turbulence and (d) Random field.

focal and nodal topologies must be created at the same time in statistically steady
turbulence. This shows the different topologies are strongly linked.

6. Discussion
6.1. Observations of the average pattern in instantaneous turbulence

It is natural to ask how relevant the average fluctuating velocity patterns in the strain
rate tensor eigenframe (figures 4–6) are in relation to the instantaneous flow. Are they
an artifact of the averaging process or do they represent actual patterns frequently
occurring in real turbulence?

For the case of wall-bounded turbulence, such as the TBL, channel and pipe flow,
extended regions of relatively uniform streamwise fluctuating flow velocity, u, have
widely been observed in the outer layer starting from Meinhart & Adrian (1995).
These regions can be very long in the streamwise direction (>10δ) compared to
their typical spanwise dimension (∼0.5δ) and although they tend to meander, they
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are predominantly oriented in the streamwise direction making them easy to detect
in hotwire and planar velocity measurements (Hutchins & Marusic 2007; Monty
et al. 2007). These regions of quasi-uniform streamwise velocity are separated by thin
shear layers commonly containing several vortices (of hairpin type) that convect at
approximately the same velocity. This observation has lead to the formulation of the
hairpin packet model for the outer layer structure in wall-bounded turbulence (Adrian,
Meinhart & Tomkins 2000), in which several hairpins are aligned in the streamwise
direction enclosing a region of nearly uniform low-speed flow. The packet model
has subsequently been supported by flow visualizations of 3D velocity data from
DNS and experiments (Adrian & Liu 2002; Ringuette, Wu & Martin 2008; Elsinga
et al. 2007, 2010) as well as by their signatures observed in planar PIV measurements
(Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003). The
flow structure in the reported packets is very similar to the present average patterns
in the strain rate eigenframe, i.e. a shear layer separating uniform flow regions and
containing foci or vortices. Additionally, del Alamo et al. (2006) have estimated the
fractal dimension of vortex clusters in the logarithmic region to be 2, which suggests
again an organization of vortices on surfaces or sheets.

The existence of large-scale uniform velocity zones in isotropic turbulence is
arguably less well known due to the lack of a principal direction and associated
visualization difficulties. Although there have been reports of the alignment of some
vortices (Vincent & Meneguzzi 1994) and the background vorticity being concentrated
in sheets with the tube vortices embedded in this background (Jimenez et al. 1993),
which are based on a visual inspection of their DNS data. Results from a box-counting
method (Moisy & Jimenez 2004) have also revealed a non-uniform distribution of
intense vorticity and strain-rate structures, which indicates the presence of a large-scale
organization of these small-scale structures without detailing its nature.

A first indication of uniform velocity zones in the present isotropic turbulence data
is given by the number density for the velocity direction angles as shown in figure 13,
where θ represents the azimuth angle of the velocity vector in the x, y plane and
φ is the elevation angle with respect to the x, y plane. For the plot only velocity
vectors are considered within a subvolume spanning one-fifth of the total volume, i.e.
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Figure 14. Visualization of the intense vortical structures in a subvolume of isotropic
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Figure 15. Same as figure 14 but for a random velocity field.

256 × 256 × 50 points corresponding to 644η × 644η × 125η. Several distinct principal
flow directions marked by an increased probability may be detected in figure 13, four
of which are indicated by ellipses. The spatial structure associated with these four flow
directions is visualized using an indicator function, which is non-zero only when the
velocity direction is within one of the ellipses (figure 13) and its magnitude is above a
given threshold (1.3 times the root mean square (r.m.s.) of the u-component of velocity
here). These detected structures in the subvolume are shown in figure 14(b) in colours
corresponding to those of the ellipses in figure 13. For clarity, yellow arrows have
been added to indicate the approximate average flow direction. Note the extended
spatial coherence of the detected regions in the direction of their velocity, which is
of the order of the computational domain. Within each region the flow direction and
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Figure 16. (Colour online) Details of the isotropic turbulence field near the position marked
X in figure 14. The contours indicate positive levels of the second invariant of the velocity
gradient Q to detect swirling motion or vortices. Furthermore, a convective velocity has been
subtracted from the velocity vectors to highlight the flow relative to the vortices.

velocity magnitude is relatively constant (above the threshold), hence they may be
regarded as uniform flow regions. Also shown in green in figure 14 are the intense
vortical structures detected using the second invariant of the velocity gradient tensor
Q (the threshold is 1.6 times the r.m.s. of Q), which have the well-known tube or worm
like shape (She et al. 1990; Jimenez et al. 1993). As in Vincent & Meneguzzi (1994)
alignment of intense vortices can be observed in figure 14(a) showing only the vortices,
which is even clearer when plotting the vortices together with the uniform flow regions
(figure 14b). The latter plot further suggests that the vortices are predominantly found
near the edges of the uniform flow regions consistent with a model of aligned vortices
separating the large-scale motions. In comparison, a random divergence free velocity
field does not reveal this level of organization (figure 15) even if the velocity power
spectrum and method of visualization are identical to the isotropic turbulence field.
For the random field, the uniform flow regions are more round and not elongated.
Furthermore, the vortices are blob like and appear uniformly distributed throughout
the volume, which is very different from the observed alignment around the uniform
flow regions in the case of isotropic turbulence.

Figure 14 also contains clusters of vortices, which are not easily interpreted using
the present method of display. One example, labelled X in figure 14(b) (near x/η = 400,
y/η = 200), is examined more closely using the detailed visualizations in figure 16.
These show velocity vectors in the x, y plane, which is approximately normal to the
axis of the vortices visible in this plane. These vortices are shown by the contours of
positive Q. Further, note that a convective velocity has been subtracted to highlight
the flow pattern relative to the vortices. Figure 16(a) shows three vortices aligned along
the dashed line convecting at approximately the same velocity, which is assumed to
be equal to the flow velocity inside the vortex core. Between the vortex cores saddle
points are found. On either side of the dashed line the flow appears relatively uniform
and without vortical motion. Similar patterns are observed in figure 16(b), where two
dashed lines indicate the alignment of two and three vortices separating larger regions
of more uniform flow. These results demonstrate that vortex alignment also occurs at a
smaller scale containing only a few vortices as compared to the large scale in figure 14.

Based on the above results and similar observations reported in the literature, it
is concluded that the pattern of aligned vortices separating large-scale uniform flow
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PIV TBL DNS channel DNS isotropic

Taylor microscale 0.18δ (∼29η) 76+ (24η) 26η
Distance between vortex cores 0.26δ (∼42η) 130+ (41η) 46η

Table 3. Taylor micro length scale compared to the distance between vortex cores in
figures 4–6.

regions is common in instantaneous realizations of both wall-bounded turbulence
and isotropic turbulence, which strongly supports the idea that the presented average
pattern in the strain rate eigenframe (figures 4–6) is representative of a general
frequently occurring flow pattern. Moreover, in view of these patterns having a strong
link with universal aspects of turbulence, such as the vorticity alignment (§ 3) and the
teardrop shape of the joint p.d.f. of the invariants Q and R (§ 5), it is believed that
quasi-uniform flow regions separated by shear layers containing the (intense) vortical
structures also are a universal aspect of developed turbulence in general. Turbulence,
however, is not a simple collection of these average patterns (randomly) distributed
in space. Rather, the averages should be viewed as a synthesis of turbulence, which
contains features/patterns that occur very frequently in the instantaneous turbulent
velocity fields. They are the dominant pattern so to say.

6.2. A possible Reynolds number scaling and a model for turbulence

The average patterns in the strain rate eigenframe (figures 4–6) contain features that
may be associated with the length scales of turbulence, i.e. the Kolmogorov length
scale, η, the Taylor microscale, lt , and the integral length scale, L, which allows us to
speculate on a Reynolds number scaling for these patterns according to η/L = Re−3/4

and lt /L =Re−1/2. The diameter of the vortex cores in particular, but also the thickness
of the shear layers, are currently believed to scale on the Kolmogorov length scale
(Jimenez et al. 1993; del Alamo et al. 2006; Ganapathisubramani, Lakshminarasimhan
& Clemens 2008), where the average core diameter is found to be around 10η. The
uniform opposing motions on either side of the shear layer are typically large-
scale motions, and hence they have an associated length scale L. Lastly, the distance
between neighbouring vortices is proposed to be of Taylor microscale order, consistent
with the dimensions of the dissipation structures observed between the vortices
(Ganapathisubramani et al. 2008). Although the actual vortex core may be of η size,
the influence of the vortex may thus extend over distances of lt . To provide some
support for this scaling, the Taylor microscale has been estimated for the present

flow cases using lt =

√
u2/u2

x and compared to the distance between vortex cores

in the average patterns (taken as the distance between the points of zero velocity
inside each swirl region in figures 4a, 5a and 6a). The results (table 3) are consistent
with the proposed scaling and suggest a vortex spacing of 1.7lt . We should note,
however, that due to the limited separation between η and lt scales, higher-Reynolds-
number data would be required to further confirm the proposed scaling of the vortex
spacing. Also, the Taylor scale for the experimental boundary-layer data should be
taken as indicative due to the limited spatial resolution in this measurement, which is
expected to lead to a slight underestimation of the velocity gradients and consequently
overestimation of the Taylor microscale.

The present results further suggest a universality of the small-scale turbulent
motions when studied in an appropriate local frame of reference, which is taken here
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as the eigenframe of the rate of strain tensor. The concept of small-scale universality
is hardly new. However, less well known are the (spatial) relation between the small-
and large-scales of motion and also what would be a suitable reference frame.
(Although, a local frame of reference is in fact implicit in the analysis of local
flow topology through the invariants of the velocity gradient tensor Q and R.) The
observed small-scale universality may be used to formulate a general model for the
organization of flow structures, in which shear layers are folded around large-scale
uniform momentum flow. These shear layers contain the topological features, and
hence topology dynamics, with the Reynolds number scaling as discussed above. The
proposed universal organization gives rise to the conjecture that differences between
various types of turbulence simply lie in the character of the shear layers (folded/
unfolded/random or not) possibly associated with large-scale instability modes of
the various flows prescribing the nature of the large-scale uniform flow regions.
Alternatively, it can be argued that the vortices align themselves thereby producing
the large-scale motions. In the instantaneous velocity field the result is the same,
and therefore a distinction cannot be made on the basis of the present data. This
would require further study of the temporal evolution of the flow structures, such
as for instance shear-layer roll-up (Ruetsch & Maxey 1992; Vincent & Meneguzzi
1994), which is outside the scope of the present work. More generally, it can be
said that the difference between isotropic and non-isotropic turbulence is caused by
statistical differences in the alignment of the eigenframe with respect to the fixed
world coordinates x, y, z.

The suggested direct link between small and large scales has implications for large-
eddy simulations (LES), where the large scales are resolved and the smaller flow
scales have to be modelled. In particular, the dependence of the orientation and
organization of the latter on the large scales provides further support for a subgrid
modelling based on coherent structures as for instance proposed by Misra & Pullin
(1997).

Additionally, the proposed flow organization is consistent with some other
observations regarding small-scale turbulence. First, the relatively thin shear layers
containing vortices are consistent with the intense small-scale intermittency (Batchelor
& Townsend 1949). Secondly, the large instantaneous dissipation, ε = 2νSijSij , occurs
in the node-saddle-saddle topologies in between the aligned co-rotating vortices within
the shear layer and it is sheet-like (see figures 4–6), which has also been reported
before (e.g. Chacin & Cantwell 2000; Moisy & Jimenez 2004; Ganapathisubramani
et al. 2008). There may also exist a connection between the shear layers within
turbulent flows and the turbulent/non-turbulent interfaces, which have discontinuities
in velocity and a tendency towards a singularity in the mean vorticity, as recently
shown by Westerweel et al. (2009). A shear layer located at the interface can explain
these observations, and it is quite possible that this layer has a similar internal
structure consisting of aligned vortices to that we report here.

6.3. Dynamics

Concerning the origin of sheet structures in turbulence, analysis of the vorticity
equation, assuming the nonlinear and viscous terms to be small and straining to
be much larger than vorticity, has shown that vorticity tends to produce sheets
possessing the vorticity alignment with the intermediate eigenvector of the rate of
strain tensor (Kevlahan & Hunt 1997). Similarly, Betchov (1956) proposed that
vorticity forms sheets when the intermediate eigenvalue of the strain rate tensor is
positive. Following its formation, shear-layer roll-up has been observed by several



536 G. E. Elsinga and I. Marusic

researchers (e.g. Ruetsch & Maxey 1992; Vincent & Meneguzzi 1994; Passot et al.
1995). This dynamic sequence of events leading to the aligned vortex pattern may
have aspects in common with transitional flows, where shear layers associated with
low-speed streaks in early (by-pass) transition become unstable leading to small-scale
vortex formation (Swearingen & Blackwelder 1987; Brandt, Schlatter & Henningson
2004). It underlines again the significance of shear layers in turbulence.

7. Conclusions
The flow topology associated with universal aspects of small-scale turbulence has

been investigated by evaluating the average flow pattern in the eigenframe defined
by the eigenvectors of the rate of strain tensor, λ1, λ2 and λ3. These universal
aspects include the preferential alignment of the vorticity vector with the intermediate
eigenvector of the rate of strain tensor λ2 and the teardrop shape of the joint p.d.f. of
the velocity gradient tensor invariants Q and R. In this study, three different turbulent
flows have been considered: a TBL, a turbulent channel flow and homogenous
isotropic turbulence. The resulting average pattern is very similar for all flow cases
(figures 4–6) revealing a shear layer at 45◦ with the most stretching and compressing
eigendirections, λ1 and λ3, which separates two larger-scale relatively uniform flow
regions of opposing velocity directions. Vorticity associated with this shear layer
is oriented in the direction of λ2 and is being stretched, which is expected since
the eigenvalue associated with the intermediate eigenvector is positive on average.
Furthermore, the shear layer contains stable foci, or vortices, aligned in the direction
of the shear layer, which are separated by unstable node-saddle topologies.

The average pattern in the strain rate eigenframe contains an important asymmetric
component in the form of the mentioned shear layer, which is also apparent in the
average flow patterns around the vorticity vector and the swirling axis (figure 10). The
statistical dominance of shear layers, together with the geometric relations between
shear layers and the eigenvectors (see Jimenez 1992, §§ 2–3), explains the observed
preferential alignment of the vorticity vector with the intermediate eigenvector in
turbulence.

Furthermore, the average patterns offer an explanation for the teardrop shape of
the joint p.d.f. of Q and R, suggesting this single point statistic has meaning in
terms of an extended flow structure. In particular, the stable foci and the unstable
node-saddle topologies within the shear layer, respectively, contribute to the tail along
the right branch of the null-discriminant curve and the head skewed to the upper left
in the QR joint p.d.f. The resulting joint p.d.f. for the average pattern is reminiscent
of the teardrop for an actual instantaneous turbulent flow field.

Patterns similar to the average in the strain rate eigenframe are also frequently
observed in the instantaneous realizations of the turbulent flows considered. It is
therefore not an artifact of the employed averaging. This suggests that larger-scale
uniform flow regions separated by shear layers containing several aligned vortices
are a universal feature of turbulence, which is strongly linked to the other universal
aspects of small-scale motion, i.e. vorticity alignment and QR joint p.d.f. Moreover,
such an organization is characteristic for real turbulence and is not observed in
random velocity fields.
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